4

Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE - 3. REPORT TYPE AND DATES COVERED
FINAL 01 Sep 98 - 28 Feb 99

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Rapid Training of GIL Neural Networks
DAAG55-98-1-0414

6. AUTHOR(S)
Peter Kiessler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Clemson University
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211 ARO 37543.1-Cl-ll

Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12’ b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Applying generalized inverse learning to a feedforward neural network has been shown to be an effective tool in pattern recognition.
The difficult computational step is finding the pseudo-inverse of a matrix. In this paper, we develop an efficient method using
differential equations to calculate the pseudo-inverse.

20010616 023

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

Rlapid Training ofl GIL Neural Networks.
Clark Jeffries® and Peter Kiessler?Y and Louis Ntasin®.

8Box 12195 IBM Corp., Research Triangle Park, NC 27709
bDep,t;. of MatHematical Sciences, Clemson Univ., Clemson, SC 29632.

Abstract

Applying generalized inverse learning to a feedfoward neural network has been shown to be an
effective tool in pattern recognition. The difficult computational step is finding the pseudo-inverse
of a matnix. In this paper, we develop an efficient method using differential equations to calculate
the pseudo-inverse.

Keywords: Neural networks, generalized inverse learning, pseudo-inverse

1 Introduction

Applying generalized inverse learning (GIL) to a feedfoward neural network has been shown to be an
effective tool in pattern recognition. Both Hanson [t] and Kaye [2] were successful in applying GIL
to scenarios using real data. The key feature in GIL is that it trains the network in a single iteration.
This suggests that there is potential for developing a pattern recognition tool that can be used in
" the fleld. However, first we need to overcome the difficult computational step in finding the pseudo-
inverse of a matrix. In this paper, we develop efficient methods that calculate the pseudo-inverse,
that is, the Moore-Penrose generalized inverse, see 3], via differential equations.

GIL was introduced by Pethel et. al. for for training feedforward neural networks. This is
the third project in Clemson university involving GIL. As mentioned above the key step in training
the network is in finding the Moore-Penrose inverse of a matrix M. In the first project, Kaye
[2] developed a training technique based upon the singular value decomposition of the matrix M.
In the second project, Hanson [1] successfully used the procedure developed by Kaye for pattern
recognition. The purpose of this project was to develop an algorithm for training the network
that was both fast and simple enough to be implemented on a chip. The algorithm we developed
satisfies these propenties. Not only has the algorithm been successsfully tested but we have provided
justification that it converges to the Moore-Penrose inverse of M.

The next step is to apply the algorithm in a tracking problem. While some steps have been
madk in this direction, more needs to be done. In section (6), we will elaborate on future possibilities
i this direction.

The paper is organized as follows. In section 2, we present a briefl discussion on the background.
Section 3 then discusses the feedfoward neural network and GIL. There we elaborate on the con-
struction of GIL. In section 4 we discuss efficient tecniques on finding the pseudo-inverse. We outline
several methods for finding the pseudo-inverse and examine the performance of eachl method. We
conclude thle section with a discussion of the guidelines for a stopping rule for the algorithm. In

!Clark Jeffries is currently, on leave from thle Dept. of Mathematical Sciences, Clemson Univ., Clemson, SC 29632.
2Qorrespondence: Bmail; pkiess@math.olemson.edw, Telephone: 864-656-3281

section 5 we present convergence results. Lastly, section 6 provides concluding remarks as well as
suggestions for. further research.

2 Background

Generalized Inverse Learning (GIL) is a technique recently developed for training feedforward, hid-
den layer neural networks. This technique is based on the Moore-Penrose generalized inverse of a
matrix. Since it’s introduction by Pethel et al., GIL has proven itself as a fast and efficient tool
for pattern recognition. It has been applied in predicting time series datla, acoustia data as well as
pattern recognition in grayscale images.

GIL as developed by Pethel et al. can be summarized as:
G(IA)B =6 (1)

where I' and © are input and output matrices respectively, A and B are the weight matrices, G is
a nonlinear transfer function, [G(X)];; = 31 + tanh(X; ;)] with inverse

[G~1(X)i ; = arctanh(2X;; — 1). Training is achieved by an iterative process in which the entries
in A and B are adjustied till the quantity

E= qun - @m)z

is minimized, where @ is the actual(target) output.

This training technique depends on: the left and right Moore-Penrose generalized inverses of
G(LA). Let M be an m x n matrix, then the left and right generalized inverses of M are defined as

M= MTM)IMT and Mzt = MT(MMT)?

respectively. Let n < m and assume M is of rank n, then MT M has full rank and is thus invertible
while MMT is singular. Thus M ! can be computed while M 7 ! is undefined. Realizing how
restricted GIL was because of such a training technique, a new training approach was proposed
(Kaye) using singulan value decomposition (SVD), in which the iterative scheme was redced to the
solution of a system of linear equations: M'B = @ (where M = G(/14)). For any m X w matrix M
the singular value decomposition can be written as M = VIEWT, where V) and W are orthogonal
matrices and ¥ is diagonal with the singular values of M. These singular values are the positive
square roots of the eigenvalues of M7 M. The generalized inverse(pseudo-inverse) of M is therefore
Mt = W TYT, where 97T is the transpose of X with the diagonal entries being the reciprocals
of the strictly positive diagonal entries in ¥. For any rectangular system Alz = b, SVID gives the
best solution in: the least squares sense, that is, the solution that minimizes B = ¥ (O, — ®,)2.
This change in training method led to GIL-SVD. An attractive property of GIL-SVID is it’s one step
training.

Kaye [2] then applied GIL-SVD to nonlinear systems, chaotic time series data and to periodic
functions sampled at regulan intervals. Using a map that consisted of a system: of nonlinear equations,
GIL-SVID in one pass attained the accuracy level that GIL took 15 iterations to attain. This
confirmed the superiority of GIL-SVD over GIL.

t
Using the first 25 points of the chaotic time series map
Xi—i—l = 4X»5(]i — Xi), Xy € (0, ﬂ)

to train, GIL-SVD was able to predict the 26" with an average accuracy of 1072, In fact it was
shown that the prediction of the next point on the time series map did not significantly depend on
the length of the input.

The last application of GIL-SVD by [2] was on periodic functions (sine curve sampled at a con-
stant rate). Direct application of GIL-SVD yielded high errors. A technique called the embedding-
dimension was adopted to reduce the error. An optimum embedding dimension of 3 was found and
the error in predicting was of the arder of 107%.

Hanson [1] applied GIL-SVID to pattern recognition in grayscale images. To meet up with the
requirements of this particular application a version of GIL-SVD was defined as follows: Let an
mput vector I and a desired output vector D be given. Construct the weight vector A from selected
entries in I as

Define thle transfer function G(z) as

2ekz

G(:L‘) = ehz 4 ek(1-2)

where k is the gain parameter for G(z). This particular transfer function was chosen for it’s algebraic
structure (which we shall exploit later). The one setback of this version of GIL-SVD so far has
been the rank deficiency of the matrix G(I'A). Thus an exact solution for (1) using the SVD
technique cannot be guaranteed. To compensate for this effect of rank deficiency, a shift vector C
was introduced to absorb the difference between D and the approximate output obtained. Thus for
this particular application GIL-SVD was defined as

G(IA)B+C =D

Using this particular version Hanson showed that GIL-SVD was a perfect classifier of patterns
in grayscale images. Errors from patterns that were not of the training type showed a marked
difference when compared to errors from patterns that were of the training type. With G(I4) being
rank deficient in some cases, the entries of the pseudo-inverse become very large depending on the
degree of deficienoy. This introduces the problem of “brittle fits”, that is, the sensitivity of the
system blecomes too high' thus rendering the network unreliable. Computing reliable least squares
solutions to rectangular systems has been a chalenging problem. For notational purposes we shall
maintain the name GIL while refering to GIL-SVD.

3 Artificial Neural Networks and GIL

Wk consider a feedfoward network whose architecture is shown in Rigure 1 and use generalized
inverse learning (GIL) for training the network. The primary reason for using GIL is that it trains
a neural network in a single iteration. This section describes how GIL trains a neural network and

Hidden Layer

Input Layer Output Layer

Al
X Weights
Bi

Figure 1: A Standard Feedforward Neural Network.

illustrates that thle key computational problem is finding the inverse of a matrix. In the next section,
we discuss methiods for calculating this inverse.

Given an input vector I = (I1, I, ..., I,)T and a desired output vector D = (Dy, Dy, ..., Dy)T,
the neural network represents the function
D= G(IA)B +C (2)
where A and B are weight vectors, C a shift vector and G is the gain function which are determined
as follows.
To determine the weight vector A select n representative input values (r < m) among the {I;}.

Then:

. _ 1 1 1
A:(AI,AQ,...,An)z (51—1,2—15,...,5}_—).

Given an m x m matrix M, G(M) is a m x n matrix whose (4, j)** element is g(M;;) where

gekx
= ekr 1 gk(l—z)’

g{z)

Thus, the gain function G(IA) is an m X n matrix whichl we assume has rank n.

The weight vector B is found from the equation
D = G(IA)B.

In the case where n = m then B = G(IA)™!'D and we take C! = 0. When n < m, which is usually
the case, D' = G(IA)B does not have a solution. In this case B is the vector that minimizes the
distance between D and G(IA)B and is given by.

B = G(IA)'D,
where G(IA)' is the pseudo-inverse of G(IA) . The shift vector C is then found by
C =D - GIA).
It follows that the key step in the analysis is in finding G(IA)!. We conclude this section

by discussing some of the properties of this matrix. To start, consider the function g(z) which is
sigmoid and ramps from: { to 2, taking value I when z = % The parameter k& is called the gain of
the sigmoid function and represents the slope of the sigmoid function at z = %

Fon very large values of k, g(z) approximates a step function that maps z < % to 0, z > %
to 2 and z =1 to 1. So as K — co, G(IA) — M, the m x n matrix

(0 00 0
0 00 0
1 00 0
2 10 0
M=|2 21 0
2 2 !
2 2 2 2
2 2 2 2)

up to permutation of rows.

M has maximal rank and a left pseudo-inverse of M can readily be computed as

0 01 0 0 ... 0 0... 0\

a 0 -2 I 0 ... 0 0...0
Mi=1o0 0 2 -2 1 ... 0 0...0

0 0 ...

0 0 +2 ... e =2 1... 0

MM is the n x n identity matrix, I,,, but MM is not the m x m identity matrix I,. Our
main task here is to find for any value of k the matrix M, otherwise known as the pseudo-inverse,

suchl that MM is I, and M M*is as close to I, as possible. Such an M* should minimize the sum
of squares of the entries of MMt — I,,,.

Given any rectangular m X n matrix M, a singular value decomposition of M can always
be written as M = USVI”, where U (m x m) and VI (n x n) are both orthogonal and ¥ is an
m x n diagonal matrix with nonnegative diagonal entries (known as the singular values of M)
nonincreasing down from the (1,1) position. If M has maximal rank n, then all singular values are
positive, otherwise M is rank deficient and some singular values may be zero or close to zero. The
pseudo-inverse Mt = VE*UT, where £* is the n x m diagonal matrix with diagonal entries the
inverses of the positive diagonal entries in 3.

Constructing A from the largest n entries of I and letting ¥ — oo, G(I'A)] approximates M

with pseudo-inverse Mt as below. For this case MM is I, and [|M Mt — I, ||t = (m — n)% whichl
is the theoretical lowest possible.

(388
> 21 0 P00 000
-2 1 0 0 0 0
M=\ 5, L,M*=2—21f 0 0 0
2 22 2 ,,:1:2 -2 1 0
\!'222 2/

4 Efficient Techniques in finding G/(I A)T-

It is always possible to satisfy (2) with C 7 0. For. n=m and sufficiently large k, G(I4)) is square
and full rank thus invertible giving a solution for (2) with C' = 0. Qur goal therefore at this point is
to find the best choices of A and B for any given I and D with the entries in C having the smallest
magnitude. This choice of A and B is obtained by finding thie pseudo-inverse of G(I A).

Various techniques have been developed for computing this pseudo-inverse, most prominent
being the singulan value decomposition we mentioned earlier. These techniques are not adequate for
our purpose. The ultimate objective of this work is to come up with a scheme that is accurate, fast
and stable enough for finite precision arithmetic. The speed required here should be good enough
to accommodate real time applications of the GIL. A typical real time application demands that
G(IA) be at least of size 150 x 10.

4.1 The basic idea: ODE approach.

Our technique for finding G(LA)! is via differential equations. Define a hypersurface of dimension
nm and consider that each choice ofi A and B yields a different position on the hypersurface,
corresponding to a particular approximation of G(IA)f. In 2-dimensions a graphical representation
of the problem can be summanized as follows. Let I = (I1,Is,...,I,)T be any input vector and
let a desired output vector be D = (Dy, Dy,...,Dy)T. Then the graph below shows the curve

¥Thirough out this paper, [|X| = (3, , 1X(, /)[2)2.

that represents the possible input/output pairs with various choices of weight vectors A and B.
Using the singular value decomposition we can always find that point on the curve that is closest to
the given point (I1,Iy,...,In, Dy, Do,. .., Dm)T with respect to the Euclidean norm. The singular
value decomposition inverse that minimizes the distance between the curve and the given point is
the pseudo-inverse.

(Output Vector)

(I(1), 12),....5(m), D(1), D(2),....D{m))

&————— Best choices of A and B.

Various choices of A and B generate a trajectory

(Ioput Vector)

Figure 2: The singular value decomposition generates a curve of possible input/output pairs with
various ohoices of A and B.

So given the differential equation
= (%)
we therefore find an initial point X (0) so that the above equation has a solution X'(¢) that converges
to G(IA). We compare two cases, one where f is linear and the other where f is quadratic.
In the linear case we hiave
dX

S = (M7 (I - MX)) @)

This is a first order linear homogeneous ordinary differential equation in X. To show that this
equation converges to the pseudo-inverse consider the quantity

n
S= > (65— EMikaj)27
j=1ly=1 k=1

where

P { 1 i=3j
i 0 i#j "
S represents the distance M X is from the identity I,. The rate of change of S along a trajectory can
be shown to be — Y m,bﬁg%;)? Consequently, S always decreases along all non-constant trajectories.
The valua of S is finite at any point in the nm-dimensional space. Thus trajectories asymptotically
approach the pseudo-inverse. A dynamical system for finding the pseudo-inverse must keep XM
close to I, while changing X. so MIX approximates Ip,.

Various iterative schemes have been defined using this differential equation as the basis for
evolution of trajectories on the hypersurface. This differential equation is “well behaved” in that
it provides very stable trajectories that guarantee convergence as long as the initial point is on a
non-constant trajectory. The main disadvantage of this differential equation and resulting schemes
is the convergence rate which is linear in all the cases studied. The rate of change of any trajectory
is linear in X' which results in a fixed step size Aft.

The schemes developed and studied so far include
X\t H ALY = XI(2) + {MT — X ()M MT I A (4)
which was modified to the dual scheme

Xt +At) = X(t) H{MT - MTMX(t)}At
Xt £ At) = X(t) + {MT - X(t)MMT}At. (5)

Allso schemes in the line of Runge Kutta orders 2 and 4 have been studied. The Newton’s method
has also been implemented defining the function to be solved as F(X) = I, — M X. This approach
showed the expected quadratic convergence rate, but lost some degree of speed due ta the lack of a
variable step size.

Due to speed limitations in the schemes derived from (3) the following quadratic differential
equation was defined.

B (Xt~ MX)) ()

Since this differential equation defines a continuous map in the hypersurface we can specify a math-
ematical thieory that leads to the difference equation

X(k+1) = Xi(k) + X (M} {Ln — MX(K)} AL (7)

This scheme has a convergence ratie that is at least quadratic thus providing thle necessary speed.
Due to the selective nature of the scheme all starting points do not converge to the pseudo-inverse.
See the appendix for a proof of the optimmum choice of At and a guarantee of a starting point for
this particular class of problems.

4.2 Comparison of the methods

Based on: (3) above three different schemes were developed: (4) later modified to (5), a Runge
Kutta order 2 scheme and a Rlunge Kutta order 4 scheme. The Tables(1 and 2) below show typical
performance of these schemes on two different matrices. The results are based on 200 iterations for
each scheme. Each matrix is a gray, scale representation of some picture, some of which! are adapted
from Hanson [1].

Errorf(Left) | Error(Right) | Largest Entry | Number of
MIE(60 x 10) | Iny— XM | In—MX in | X flops(Millions)
Modified 2.53 7.63 2.3 17.6
Scheme (5)
Runge-Klutta 2.53 7.63 2.3 35.6
Order 2
Runge-Kutta 2.53 7.63 2.3 72
Order 4

Table L.

To provide a common measuring unit for computational complexity the number of floating
point operations (flops) was counted for each scheme. The two examples in Tables 1 and 2 show
that the costs to attain the accuracy levels in both tables double as you go from (5) to the Runge
Kutta order 2 and then to the Runge Kutta order 4.

Error(Left) | Error(Right) | Largest Entry, | Number of
M2(150 x 10} | I,— XM I, — MX in | X| flops(Millions)
Modified 2.03 12.70 2.2 98.3
Schleme (5)
Runge-Kutta 2.03 12.70 2.2 197.3
Order 2
Rlunge-Kutta 2.03 12.70 2.2 396.5
Order 4

Table 2.

The performance of (7) on four different matrices is shown below. Table (3) is based on 40
iterations while in Table (4) the stopping criteria is based on the size of the entries in X, stopping
once the abisolute maximum entry exceeds 2 as the iterations progress.

Matrix Size Error(Left) | Error(Right) | Largest Entry | Numbler of
In— XM I, — MX in | X)| flops(Millions)
M{60 x 10) 0.00 7.07 3649 17
M(150 x 10) 0.00 11.8 91 3.9
M (175 x 10) 0.00 12.8 4.0 4.6
M(1596 x 10) 0.00 40 .15 40.7
Table 3.

;From Tables 1 to 4 it can be seen that the schemes based on (3) are computationally expensive
relative to (7) that is based on (6). Though (7) proves to be computationally less expensive, the
schemes based on (3) have an advantage that (7) lacks: global convergence.

Matrix Size Numbler: of | Error(Left) | Error(Right) | Largest Entry | Number of
Iterations | In— XM | I, —MX in | X| flops(Millions)
M (60 x 10} It 2.00 7.34 2.54 5
M\(150 x 10) 14 1.00 11.9 2.35 1.4
M(175 x 10) 13 0.6 12.9 2.05 1.5
M (1596 x 10) 10 0.0 40 g1 10.4
Table 4.

4.3 Stiopping Critleria

In the previous subsection, several examples have shown that the iterative scheme based on (7)
converges quickly to the pseudo-inverse. While any stopping criteria should depend on the accuracy,
ofl X! to the pseudo-inverse, there is another issue we need to consider. This issue is the conditioning
of M.

The conditioning of M dramatically affects the magnitude of the elements of X. Recall that the
ultimate objective is to implement this scheme with finite bit arithmetic. If we can not guarantee a
bound on the magnitude of the entries inn X(K), thlat renders the scheme useless. The table below
shows the performance of (7) on four matrices with different conditioning. One can easily recognize
the dependence on the conditioning of M of the absolute maximum entry in X.

Matrix Largest Entry | Condition

size in | X No. of M

M (60 x 10) 4207 469010

M (150 x 10) 91 23540

M (175 x 10) 4 1229

M (173 x 10) .15 541
Table 5.

This particular class of problems guarantees a bound on the entries in M, but does not guarantee
the conditioning of M. There is one main characteristic of the pseudo-inverse that is of interest to
us; it is unique and minimizes ||MiX — I,||. Consequently, we are guaranteed that (2) is solved as
well as possible. With poar conditioning of M, that is, M being close to singular as is the case
with some of the M’s above, we can not therefore guarantee a bound on the entries in X.. The
entries in X' become very large for M close to singular resulting in brittle fits, rendering the GIL
network unreliable. The goal is to choose X so that it avoids brittle fits without compromising the
effectiveness of the GIL network.

To develop a stopping rule let {X},}| be the sequence of matrices generated by (7) converging
to X, where X' is the pseudo-inverse of M. Choose N large enough so that for all v > N,, || X, M]||
is within € of . Recall that B = X|,D and C = D — MB, by an appropriate choice of X, we can
control the magnitude of the entries in B and consequently C. By the choice of the starting point
for the scheme, the sequence {Xi,} starts with terms having known bounds on the magnitude of the
entries thereby making it possible for such’ a chioice to exist. Recall also that C', the shift vector,
is introduced to take care of the error involved in using the pseudo-inverse. That makes it possible

for any left inverse and not necessarily the pseudo-inverse to ble used. The closer X, gots to the
pseudo-inverse the bletter the network is for pattern recognition.

M (60-by-10) condition Number = 463,010 M (150-by-10) Condition Number = 23540
35 T Y T y T T T T 10 T T T T T T T T
301
x x 8F
£25F £
£ Z g}
g20f 5
€ E
310} 3
= = L,
5k
0 L L i 2 L L 0 \L\ : L \ 1)
2 4 6 8 10 12 14 16 18 20 2 4 8 8 10 12 14 16 18 20
Number ot lterations Number of Iterations

M (60-by-10) condition Nurnber = 469,010 M (150-by-10) Condition Number = 23540
T T T

T T T

1=
a
=3

—— Left
—+— Right

3
T
1

a &
k3 k3
E 3
E sa
o 14
2 N T 230 —— Step Siz
° °
s 6 1 &
£] e Left = 20} 4
k= —+— Right =l
T 4r —— StepSizg] =
k] 3 10 E
€ 2r e ~4—n—3%f E
50 L . L .) . . \ 50 b -+ S
u=_| 2 4 6 8 10 12 14 16 18 20 5§ 2 4 8 10 12 i4 16 18 20
Number of lterations Number of herations
M (175-by-10) condition Number = 211 M (175-by-10) Condition Number = 1228

1.6 T T T T T T T T 5 T T T T T T T T

141 g
x x4
£1.2 - £
z £a
§ 1 1 %
E
2 0.8 7 E 2
%]]
g [eX:] g '

04]

02 L s L 0

“2 4 8 8 10 12 14 16 18 20 2 4 8 8 10 12 14 18 18 20
Number of iterations Number of iterations

M {175-by-10) condition Number =211 M (175-by~10) Condition Number = 1228
T ™ T

a a8
S 60 T T T Y T T S 50r v T y T T T T
S 9 s 9
S 50 —— Left K] —_— Left
H —+— Right 0 —+— Right b
£, ——— Step Size] | £ ——— Step Sizg
o
] g 30 4
£ 30 1 6
4 @20 B
g 13
3) +

] 10 B
g1 5
g o ; * * g o S * —
o 2 4 6 8 10 12 14 16 18 20 5§ 2 4 [] 10 12 14 16 18 20

Number of lterations Number of lterations

Figune 31 Evolution of four important numerical quantities in the dynamical system.

The graphs above show the evolution ofl the maximum entry in |X|, error levels and step size
for four different matrices (Matrix size and condition number given at the top of each graph). These
graphs represent part of a careful experimentation with matrices up to size (175 x 10) in an attempt
to determine possible stopping criteria for (7). The graphs in Fig. 3 show that at the fifth iteration
the following observations can be made:

I. For each case the largest entry in X has magnitude not exceeding 1.

2. In almost all of the cases the step size is very, close to 1.

3. The difference between the error from the right(||I,, — M X||) and the theoretical error from
the case with M constructed as k — oo does not exceed 1.

4. The error from the left varies from case to case, generally increasing with “poor conditioning”
of M.

5 Convergence Rlesults

In this appendix we show that our scheme converges. If m: and n are positive integers, My, » denotes
the collection of matrices having m rows and n columns and M, denotes the collection of square
matrices of n rows and columns. For a matrix M, we denote the transpose of M by M7T. The
matrix I, € M, denotes the identity matrix.

Let M: € My, », ble real where m > n and assume that Ml has rank n. From Theorem 7.3.9 in
Horn and Johnson [?], M has a singular value decomposition of the form

M = vswT

where V € M,,, and W. € M,, are unitary and real,

- [2)

where D € M, is a diagonal matrix whose diagonal elements consist of the strictly positive singular
values of M and 0 € Mp,_p 1 is & zero matrin. We note that

MT =wsTVT.
The Moore-Penrose inverse for M is the matrix X' € M, ,, given by

X = wztu’l (8)
where

=] D* 0)
and 0 € My, 1, is a zero matrix.

The following procedure is developed for finding the Moore-Penrose inverse of the matrix M.
Set X,(0) = M7 and for k =0,1,2,...

XHK+1) = X(k) + X(k)(Im — MX(K)AL.

Lemma 1 For each k =0,1,2,..., the matrin X (k) has a singular value decomposition of the form

X(K) =wxTvl.

Proof. The proof is by induction. The result is true for ¥ = 0 since Xi(0) = M7T and M7T has the
desired decomposition. Now assume the result is true for k. Then

X(k+1) = X(k)+ X (k) (In — MX(K)At
= WSV +Wsi{VI(VIL, VT - vEwTwslvT)At
= W[Z{ +Xf(Im — 230) AL VT

Thus X (k + 1) has the desired decomposition with
Sk = 5% + 55 (Im — BTF) At
which completes the proof.

We write

a-[2]

where Dy, € M, is a diagonal matrix and 0 € M, , is a zero matrix. Moreover,
MX(k) = VvEWTwxIvT
veslvT
where ZE;{ € M,, is of the form

22£'=po’€ 0]_

0 0
Theorem 1 The At’s can be chosen so that X'(K) converges to the Moore-Penrose inverse Xl of M.

Proof. Since the Moore-Penrose inverse is of the form (1), from Lemma 1 it suffices ta shaw thiat
Dy converges to D~!. This is, hawever, equivalent to showing that DDf’ converges to I,.

Let M5, X%, ...) Xk be the diagonal elements of DD{. Since Dy = D, it follows that for k = 0
the A’s are the strictly positive singular values of M. From

VEWTA{W [Sf + 5F (I, — £5T)AL] V)
= V[35{ + 25 (. — ZEF)AL) VT

MX (K +1)

it follows that
k . ‘e QY
AHL = Mk - ahA, (9)

For. At > 0, the following observations can be made directly from (2):

(1) If A% =1, then X+ = 1.

(1) If Xk < 1 then AEHT > K.
(ii) If Ak > T then AST! < A%
(iv) If we choose At = 1/A¥ then

ML= 0k Q- A1 /AE =1

Now let Ak, = max{ Aﬁ;)\;1“ 4 1} and choose At = 1/Mk_ . Then for every j such that /\;‘-f > 1
we have

J:
> AF 41—\

= L

AL = k- MENEE

So that from (iit),
k k+1
>‘] >)‘j > 1.

For every 7 such that /\;? < 1 we have

J
Y
= 1

A= NE o (1= XA/

IA

So fromy (ii)
k k-HY
From (iv) our choice of At guarantees that at each step the largest)\;? blecomes 1 at the next step.

From (i}, once a)\f is 1 it stays at 1. Thus choosing At in this way the algorithm will converge in
7 steps to the Moore-Penrose inverse. This completes the proof of the theorem:.

Liet ug make a couple of remarks about the evolution of the At’s. The sequence of At’s as given
by the proof are not necessarily monotonic. We note that if A€ > 1 then At as chosen in the proof
will bie less than 1 but greater than the At chosen at the previous step. If, However, Ak < 1, then
the At will be bigger than 1 but it is not necessarily larger then thie At at the previous step.

To construct a nondecreasing sequence of At’s we chose At = I whenever A\E__ < 1. Note that
ini this scenario

MFL = 1 (12 (10)
Corollary 1 Supposa that for some ko, Mo, < 1. Let J = {j 1 /\;?"’ < 1}. Set At = 1 for all
k > ky. Then forallj€ J.
!

as B — oo.
Proof. Define T': (0, 1] — (0, 1] by,

T(z) =1—(1-2)%
Then

1-T(2) = (1-2)2

-

Pick z € (0, 1] and define for k£ = 1,2,...
2p = T zk—1)-
Then an induction arguement shows that
1—z=(1- zq)zk.

Thus 2, — 1 as ¥ — co.

Choose j € J and set zp =)\f". Then from (10), z; = A';“H“ and the result now follows.

6 Conclusions and Further Research

Hanson showed thiat GIL is an acceptable neural network for pattern recognition. She used standard
SVD tools to find pseudo-inverses. Due to the general nature ofl the problem at hand and the
solution characteristics reqiuired for implementation on a chiip, such techniques are not generally
aoceptable. So a technique for finding the pseudo-inverse of a matrix over which we have control
became necessary, which has been the major part of this work. We have in this present work
developed such a tool, that incorporates speed and reliability for computing the pseudo-inverse of a
matrix, upon which GIL relies for. training.

The convergence of the scheme as well as the speed of convergence have both been guaranteed
theoretically. as well as computationally. The convergence results (section 5] not only guarantee
convergence of the numerical scheme but also tell us that if M is of rank n, then in 7 iterations we
converge to the pseudo-inverse using an optimal set of step sizes. Due to the ill-conditioning of M
and the short comings of finite bit arithmetic we cannot afford such step sizes. Thus we stick to the
largest step sizes thiat guarantee stability of the scheme while maintaining a hiigh! convergence rate.

Also we have studied the evolution of some important quantities in thie scheme forming thle basis
for a stopping criteria while gaining more insight into the evolution of the iterates. This insight
enables us to obtain “good” approximations of the pseudo-inverse while avoiding brittle fits. Based
on: our oblservations from section (4) a stopping criteria should be application specific. A suitable
stopping criteria. should take into account speed, accuracy and the environment under which the
GIU neural network is implemented. The choice of a stopping criteria should start with speed
requirements. The accuracy level needed should then determine if such an environment exists that
can provide the necessary accuracy without compromising the speed.

Preliminary results confirmed that the design of a microchip to implement the system of equa-
tions in such' a network could use as low as 8 bits. Although finite bit arithmetic based on 8 blits
slows down the convergence rate ofl the weights per iteration, the overall computational costs is
chieaper.

What we would like to da next is to simulate an entire network for tracking a dynamical system
using GIL for vision. To proceed with such simulations knowledge of important parameters in
practical scenerios is necessary. Fonexample, the kind of camera available for use in such applications
is very important. The camera speed and response time in moving it to new azimuth and elevation
angles should form a very critical part of the simulations. Also we need to address the question

of the optimal window size. Wihiat window size would allow thle system to keep tract of the target
while keeping the computational costs at a minimum. To summarize, we would like to apply thie
algorithm to a tracking problem withl realistic parameters.

Given the present estimates of speed of training as shown both experimentally and thieoretically,
this tool promises an acceptable speed in some real time applications. By optimizing the necessary
steps that are computationally expensive, we hope to improve the speed of the entire network. The
simulations will provide the basis for estimating the overall computational costs of such a network.
These estimates will in turn provide the necessary, information for a tracking camera experiment in
which GIL will provide vision calculations. Finally, we hope to provide enough information for the
decision on whether to proceed to hardware or not. We hope to collaborate with hardware experts
during this phase of the work as important hardware decisions will have to be made.

A cknowledgments

This workl was sponsered by Army Research Office contract DAAG55-98-1-0414.

Rleferences

[1] D. Al Hanson. Structured Neural Networks with Performance Guarantees, Department of Math-
ematical Sciences, Clemson University, Clemson SC 29632.

[2] R. L. Kaye. A New Neural Network Approach to Pattern Classification, Department of Math-
ematical Sciences, Clemson University, Clemson SC 29632.

(3] G. H. Golub and C. F. Van Lioan. Matriz Computations, John Hopkins, 1989.
[4] M. T. Heath. Sientific Computing: An Introductory Survey, WICB/McGraw Hill, 1997.

